
 

   

112 
 

Third 21st CAF Conference at Harvard, in 
Boston, USA. September 2015, Vol. 6, Nr. 1 
ISSN: 2330-1236 
 

  

 

 

A Software Project Management Innovation (SPM) 

Methodology: A Novel Method for Agile Software 

Development 

Fahad Abdulaziz Aleid 
Royal Saudi Air Force  

Communications and Information Technology  
Riyadh, Saudi Arabia 

 

 

Abstract 

This paper seeks to define and describe a new and effective Agile Software Development 

Method, which comes under the auspices of the Software Development Life Cycle (SDLC). 

The method has been satisfactory experimented by the Royal Saudi Air Force (RSAF). This 

paper called the method “Software Project Management (SPM)” which gives the 

development team to control and manage software project resources more effectively by 

increasing team collaboration and productivity thus decreasing the amount of time needed to 

complete the project. The methodology, therefore, allows clients more time to produce a 

dedicated and well-integrated application by applying a refined systematic and structured 

process of continuous refinements within a defined period. This paper fills a gap and 

contributes knowledge towards Agile Software Development methodologies by providing a 

new novel method that has been tested, applied, and modified during managing RSAF’s 

software projects.  

Keywords: Software project management, SPM, Agile Software Development, SDLC.  

 

 

 

 

 

 

 

 

 



A Software Project Management Innovation (SPM) Methodology  

113 
 

Introduction 

In the last decade, Software Development Life Cycles (SDLC) has undergone a major 

revolution in the Information Systems (IS) arena. Numerous software development methods 

have appeared in this field. Developmental approaches originated in the field of IS but the 

risk facing both in-house and outsourcing software teams is to develop applications that meet 

customer satisfaction within a given timeframe.  

This paper describes some of the agile methods. Then discusses the new 

methodology, which is the topic of this research. 

The study is presented in five sections. The following section, reviews some agile 

software development concepts, their values, principles and characteristics. The second 

section describes some example agile methods, such as, SCRUM, Unified Process (UP) and 

Feature-driven development (FDD). The third section covers Software Project Management 

Methodology (SPM), which is the central feature of this study. The final section summarizes 

the research by describing its contribution to knowledge, its implications and its scope for 

further work in the field. 

Literature Review 
An overview of Agile Software Development 

The purpose of this section is to present an overview of Agile software development. 

To begin with, Agile software development (ASD) is a set of software development 

methodologies that is an alternative to the traditional waterfall approach. ASD focuses on 

finding a way of flexibility, close collaboration between the development team and business 

side, keeping code simple, shorten the development time-frame, respond to predictable and 

unpredicted change, do more tests on small releases of the system, and delivering each 

release as soon as it is ready. It consists of a group of software development methods that 

share the same characteristics.  

Agile software development comprises different development methods but teams 

agree upon the need for collaboration, e.g. programmer teams and business experts in order to 

deliver a particular software project. It encourages group planning, evolution, many 

deliveries during the particular project, continuous improvement and flexibility to change 

(Agile Alliance, 2013).  

Agile software development is grounded in techniques developed by James Martin 

(Martin, 1991) and James Kerr et al (Kerr & Hunter, 1993). In 2001, representatives from 

Extreme Programming, SCRUM, DSDM, Adaptive Software Development, Crystal, Feature-

Driven Development and Pragmatic Programming met to consider lightweight development 

methods and produced an Agile Software Development Manifesto (Agile Alliance, 2013). At 

the manifesto’s publication the authors said,  

“We are uncovering better ways of developing software by doing it and helping 

others do it. Through this work we have come to value: 

Individuals and interactions  Over Processes and tools 

Working software  Over Comprehensive documentation 

Customer collaboration  Over Contract negotiation 

Responding to change  Over Following a plan 

That is, while there is value in the items on the right, we value the items on the left more” 

(Agile Alliance, 2013). 

Agile Software Development, therefore, considers self-organization, interactions and 

motivations are more important than process and tools. It also considers working software 

more important than presenting documents to clients in meetings. Thirdly, it values customer 

collaboration to fulfill better their requirements because during the initial stages of the project 

customers cannot always precisely define them. Therefore, customer collaboration/ 

involvement is very important. Finally, this type of development believes that software 

https://en.wikipedia.org/wiki/Software_development_methodologies


Fahad Abdulaziz Aleid 
 

114 
 

projects should not stick to a fixed plan but be capable of making a quick response to change. 

Highsmith and Cockburn (2001, p. 122) said,  

“What is new about agile methods is not the practices they use but their recognition of 

people as the primary drivers of project success, coupled with an intense focus on 

effectiveness and maneuverability.” (Highsmith & Cockburn, 2001) 

There are 12 principles or rules in the Agile Manifesto as follows (Agile Alliance, 

2013): 

1. Customer satisfaction through the continuous delivery of useful software is important.  

2. Changing requirements is welcomed and acceptable even if it comes late during 

development. 

3. The software is delivered within a couple of weeks for each cycle. 

4. Developers and clients cooperate and work together on a daily basis. 

5. Projects are built around motivated and individuals who are trusted by customers. 

These individuals should facilitate customers’ needs and prepare the appropriate 

software environment.   

6. Face-to-face conversation is the best method to understand clients’ requirements. 

7. The best measurement of progress is the working software itself. 

8. Promote sustainable development and all participants in the project should maintain a 

constant pace. 

9. Continuous attention to deliver fast quality software with a high potential for user 

acceptance and at the same time it should possess the ability to adapt to changing 

business requirements. 

10. Simplicity is important. This can be achieved by reducing the amount of work 

required to operate the software without loss to its functionality.  

11. A self-organizing team is essential because it is the key to achieve best requirements, 

design and architecture. 

12. The team should hold regular discussions about their practices and seek ways to 

become more effective. 

Characteristics of Agile Software Development 

There are nine characteristics of Agile Software Development as follows (Agile Alliance, 

2013): 

1. Modularity: It is breaking the process of development into different modules called 

activities. 

2. Iterative: The development process comes in short cycles to achieve good results with 

respect to verifications and corrections. 

3. Time-bound: For iterations there is a time limit, which makes the project easy to plan 

and develop, and lower the risks every four weeks. 

4. Parsimony: Agile processes attempt to remove unnecessary activities to reduce risks 

and heighten success. 

5. Adaptive: Agile process adapts to any new risks. 

6. Incremental: Agile processes do not deliver the entire work at once but divide the 

system into increments. This helps to teams to work in parallel within different time 

scales. 

7. Convergent: Agile processes apply all techniques to reach goals. 

8. People-Oriented: Agile processes favor people over process and technology.  

9. Collaborative: Agile processes encourage team members to communicate and 

collaborate with each other for quicker integration in large projects and to be able to 

work in parallel. 

 

 



A Software Project Management Innovation (SPM) Methodology  

115 
 

Reviewing some of Agile software development methods: 

This section reviews some examples of the previous studies of different methods of 

the Agile Software Development such as SCRUM, Unified Process (UP) and Feature-driven 

development (FDD). A brief description about some of these methods follows.  

SCRUM 

Scrum is an agile software development method that manages software product 

development, which was developed in 1986 by Hirotaka Takeuchi and Ikujiro Nonaka in the 

New Product Development Game (New Product Development Game, 1986). It is a flexible 

strategy that allow development teams to work as a unit in order to reach the software’s 

goals. The process is described, 

“Scrum is a management and control process that cuts through complexity to focus on 

building software that meets business needs.” (Scrum.org, 2015). 

In other words, Scrum is  

“a simple framework for effective team collaboration on complex software projects” 

(Scrum.org, 2015). 

The main principle of SCRUM is during a software project, the owner of the project 

has the ability to change requirements even in the middle. This cannot be achieved easily if 

traditional development methods, e.g. a sequential process, such as, the waterfall model are 

used. The following diagram presents SCRUM’s process framework. 

 

Figure 1:  The SCRUM method lifecycle (Scrum.org, 2015). 

Before describing the main roles in Scrum, this study presents and explains the terms 

“Product Backlog” and “Sprint Backlog”. To begin with, product backlog is an ordered 

requirement list for the product. The product owner has the main responsibility for it. It can 

be changed during the stages of the project. It lists the requirements, functions and features of 

the product. It has items like description, order, estimated time and value. The advantage here 

is that requirements can be changed while project is still in development. Product backlog 

refinement usually takes no more than 10% of the capacity of the development team. The 

more important items in the product backlog should be more detailed compared to those of 

lower importance.  

On the other hand, sprint backlog is a set of items for each sprint that is selected from the 

product backlog. During sprint, the sprint backlog is updated after each Daily Scrum.  

After describing the above terms, this study presents the three main roles in SCRUM. The 

first role is the product owner who is a person represents the customer (client) by writing the 

customers’ needs (user’s story) and ensuring that the development team delivers the correct 



Fahad Abdulaziz Aleid 
 

116 
 

and accurate product to the business. He/she is responsible for ranking and prioritizing the 

requirements and adding them to the product backlog.  

The second role is the development team in which the team is made between three to nine 

people. These people are a mixture of analysts, developers, designers, testers and writers of 

documents. They are responsible for developing and delivering the parts of the final product 

at the end of each sprint. 

The third role is the scrum master who is responsible for eliminating risks and removing 

obstacles during the project. This helps the team to achieve their goals. The scrum master, 

however, is not a project manager but a person who facilitates teamwork and ensures that the 

Scrum process is used as originally proposed. 

Sprint is the core key of Scrum. Each sprint last between 1-4 weeks. During each sprint, 

no one can make a change but the scope can be negotiated for clarifications. This helps the 

team to learn more about the issues under work. This approach helps to limit risk to one 

month of the costs. 

Scrum proposes four events in order to adapt (Scrum.org, 2015). First is the sprint 

Planning event which plans what needs to be delivered during this sprint and how much time 

is required in order to achieve the work. The maximum time for this stage is eight hours in 

case the sprint is one-month long. Second event is the fifteen minutes daily scrum meeting 

which held between members of the development team to assess what has and needs to be 

achieved during the next workday. The rule of the scrum master is to ensure that the 

development team has attended the meeting within the fifteen minutes’ period. Third event is 

the sprint review. This event has a maximum of four hours. This meeting takes place at the 

end of each sprint to assess what was achieved during the sprint and compare it to the Product 

Backlog. The product owner explains what has been and not been done in the Product 

Backlog. The development team presents their work and problems that arose during the sprint 

and how they propose to solve them. The forth event is the sprint retrospective. This event is 

a maximum of three hours long. The meeting is a good chance for the team to plan 

improvements for the next Sprint.  

 

Unified Process (UP) 

It is a simple and easy approach for developing business software using agile techniques 

(Scott W. Ambler + Associates, 2006). The Unified Process captures the nature of Agile in its 

four phases (Scott W. Ambler + Associates, 2006). The first phase is the inception which 

identifies the initial scope of the project and the system’s potential architecture. Then the 

second one is the elaboration phase which verifies the architecture of the system. The third 

phase is the construction. This phase builds the software on a regular and incremental basis. 

The final one is the transition phase that validates and deploys the application into the 

production environment. 



A Software Project Management Innovation (SPM) Methodology  

117 
 

 

Figure 2: The four phases of the Unified Process. (Scott W. Ambler + Associates, 2006) 

 

Figure 3: The Agile Unified Process (AUP) lifecycle (Scott W. Ambler + Associates, 2006). 

As seen in the above figure, disciplines are performed in an iterative manner (Scott W. 

Ambler + Associates, 2006). To begin with, model aims to understand the business model of 

the organization and identifies the problem, and finds the best solution. Then, implementation 

which transforms the model into an executable programming code. Then, the test that 

evaluates the system for quality purposes. This includes finding bugs and ensuring that 

requirements are met. Next is deployment discipline which aims to deliver the system to end 

users. Then configuration management which manages access to the projects’ artifacts. This 

includes versioning and managing changes to the system. Then, project management which 

directs project activities. For example, it manages risks, assigns tasks to people and tracks 

progress to make sure that it delivers on time and within budgetary limits. Then, the 

environment discipline that ensures that processes, standards, guidelines, software, and 

hardware are available to the team. 

UP produces the system for release in different versions (v1, v2…etc) but before that 

it delivers development releases at the end of iterations into pre-production servers.  



Fahad Abdulaziz Aleid 
 

118 
 

 

Figure 4: Incremental releases over time (Scott W. Ambler + Associates, 2006). 

The figure above shows that production release only comes after many development 

releases. Moreover, the first production release is normally longer than the later ones. For 

example, if the first production release takes 6 months, then the next production release may 

be delivered in a shorter time, e.g. 4 months. 

UP Agile philosophies are based on five principles (Scott W. Ambler + Associates, 2006). 

The first principle is that teamwork is oriented. They may need some high-level guidance 

from time to time. The second one is the simplicity in which a few papers not thousands 

explain everything briefly. The third principle is the agility which follows the principles of 

the Agile Alliance. The forth one is the focus on high-value activities. As stated in the 

characteristic of Agile, it attempts to remove unnecessary activities to lighten risks and be 

successful. It focuses, therefore, on activities that actually count. Final principle is the tool 

independence in which any tools are welcomed while applying Agile UP, such as, any open 

source tools. 

 

Feature-driven development (FDD): 

FDD claims to be one of the lightweight Agile methods (DeLuca, 2007). It is 

motivated from a client-valued feature perspective in certain time. The method was 

developed by Jeff De Luca in 1997 for a development project in Singapore (DeLuca, 2007). 

The project involved a fifteen-month period and fifty software specialists. Jeff De Luca used 

five processes to develop.  

 

http://www.agilealliance.org/


A Software Project Management Innovation (SPM) Methodology  

119 
 

 

Figure 5: FDD process model (Nebulon Pty. Ltd, n.d.). 

 

As seen in the figure above, there are five processes (Highsmith J. A., 2002). The first 

process is the develop overall model. It started with a high-level of understanding of the 

system. Then, many detailed models were created. Each model consisted of a small group. 

Each model (or combination of models) was selected to become the model for a certain 

domain area. At the end, these domain area models were gradually merged to create the 

overall model. The second is to build feature list. After completing the first process (develop 



Fahad Abdulaziz Aleid 
 

120 
 

overall model) and after gaining enough knowledge, the team identifies the list of features. 

Each area covers some of the business activities and forms the categorized feature list. The 

feature list contains the features that are important to the user (client-valued functions). Each 

feature takes no more than two weeks. If not, then it should be broken into smaller one. The 

third process is to plan by feature. This process comes after completing the feature list 

described above since it starts with developing the plan for each feature by assigning each 

feature as a class (each class has an owner) to the programmers. The forth process is to  

design by feature. In this process, the senior programmer selects some of the related features 

that can be finished in no more than two weeks. He/she prepares the diagram for each feature 

enhancement for the overall model. Then, after writing the class, a design review is held. The 

fifth process is to build by feature. In the previous process, client satisfaction was understood. 

This step is to produce a completed feature by developing the code for each class. Then each 

unit is tested to be able to integrate it into the main building up of the software. 

After reviewing agile concepts and some of its methods, the next section presents and 

explains the innovated SPM methodology. 

 

Software Project Management methodology (SPM) 

This paper innovated the first version of the SPM. Therefore, it stretches and enriches 

this type of software development and overcomes some of the difficulties encountered when 

applying other agile methods. It provides a good approach to software project management 

and solution delivery. SPM is an iterative and incremental approach that uses the principles 

and characteristics of agile software development and the IIFO method, which prioritizes 

project items that need to be delivered. The following section presents and discusses SPM in 

more detail.  

 

Definition of SPM 

SPM refers to “Software Project Management” method which is a management 

process that builds systems that is flexible, easy to amend during the development process to 

achieve customers’ needs and their requirements within a specified time-scale and deliver the 

work incrementally and iteratively with a high percentage of success.  

The paper verifies that SPM is simple to understand, easy to manage and is a 

lightweight method. In order to apply SPM, there are some sequence of processes involved 

that perform the methodology.  

The first stage has many processes. To begin with, client and developers’ team should 

agree on a business case that captures the reasoning for the project and presented in a semi-

structured written document. This document can be modified during the project’s time-frame. 

Therefore, the business case helps developers and clients (end-users) in defining the main 

aim of the project and its initial objectives. Once the business case is captured, the product 

vision will be rich and will sets the direction and guidance to both developers and end-users. 

This results in defining and describing the scope of work (SOW) which covers the 

milestones, deliverables, time-line and the software product that is expected to be produced. 

The previous processes construct the initial understanding of the project requirements. Once 

these processes are defined, both parties can complete the project charter and signing the 

agreement. Then both parities participate in preparing the initial planning which helps to 

define and build the developers’ team.  

The second stage takes no more than two weeks. This stage reviews the documents 

and label the required products and services. These requirements should be understood and 

documented but they can be changed during the project. The documentation includes the 

initial requirements’ list. At the end of each session, the team briefly repeats what they have 

understood to clear up any misunderstanding Depending on these products and services, the 



A Software Project Management Innovation (SPM) Methodology  

121 
 

team is build. The team has a project’s manager who direct the software team, minimize 

risks, offer a healthy environment for the team and make sure all roles are defined and tasks 

are completed within time-scale. The developers team has one or more sub-teams which 

consist of programmers, analysts, documenters, testers and customer’s representative (end-

user). Each sub-team consists of no more than five specialists. The leader of the sub-team is a 

senior programmer or analyst and contains a end-user representative who can understand 

users’ needs such as an analyst or a chosen representative from the client’s side can hold this 

position.  

After building the right team and its sub-teams, the project moves forward to the third 

process which called the prioritized requirements process. once the team has understood the 

scope of the project and documentation and the initial requirements activities, the team 

moves to make a new list that contains the important products’ categories by applying 

Important-in-First-out (IIFO) for organizing and manipulating the product categories. The 

output for this process is a prioritized list of requirements activities. This process should not 

take more than 4 hours. 

The iterative and incremental process is the forth process of the SPM.  The team 

break each category into tasks. Then combine them together into segments. Each segment 

should not take more than three weeks to deliver. Each completed segment should go through 

testing process and pass through quality assurance process (QA), functional tests and then 

user’s acceptance. Once the segments pass these steps, they can be integrated into the beta 

version (development environment) of the software. This process is iterative and incremental.     

The final process comes after the last segment. In this process, the complete beta 

version go under a complete testing process (QA, functional tests and through the client’s 

acceptance process) as a piece of completed integrated software. This means that the beta 

version is ready to release.  Therefore, at the end of this process, the client signs the 

acceptance form and start working on the software under the support agreement. This process 

takes no more than two weeks. 

  



Fahad Abdulaziz Aleid 
 

122 
 

Prioritized 

Requirements 

Figure 6: SPM methodology 

 

 

  

 

 

 

 

 

   

 

Scope of 

work 

 

 

Initial 

understanding of 
the project 

requirements and 
initial 

documentation  

 

Iterative (1-2 weeks) 
Initial 

Requirements  

Items: 

1 

2 

3 

Items: 

3 

1 

2 

IIFO 

Segmentation n-2 

Tasks: 
2.1 

3.2 
3.3 

Segmentation n 
Segmentation n-1 

Breaking 

items into 

tasks and  
 

grouping 

related 

tasks into 

segments 

Pass 
functional 

test? 

Pass the 
Owner test? 

Pass 

Is this last 

segmentation? 

No 

Beta 

version 

software 

Yes 

Pass QA 

test? 

Pick up next segment 

Final version is 

released 

Does Beta 

pass 

functional 

test? 

Does Beta 

pass the 

Owner test? 

Does Beta 

pass QA 

test? 

Yes Yes Yes 

Integrate 

the model 

into 

No No No 

Product 

vision 

 

Project 

Charter 

Is team 
enough

? 

Yes 
No 

 

Iterative (1-4 weeks) 

Development 

team 

Re-build 
the team 

Business 

Case 

Plan Contract 
Kickoff 

meeting 

 

Building 

teamwork 

 

 

 

New 

Project 

 

Segment 
 <=4 weeks 

 

Analyse 

Design 

Develop 

Yes 

Yes 

No 

No 

Development process Testing Process 

Yes 

Yes 

No 

No 

No 

Final 

review 

Perspective 

review 
Yes 

Yes 



A Software Project Management Innovation (SPM) Methodology  

123 
 

Explains the SPM from the perspective of Agile 

This section explains the SPM’s method from the perspective of Agile.  To begin 

with, SPM complies with the Agile principles. SPM involves customer satisfaction; therefore, 

changing requirements are welcomed. Software is delivered frequently in small pieces, 

developers and clients work together in self-organizing teams (face-to-face conversations are 

essential as stated in 4.1). The methodology is simple, easy to apply and understand. 

Moreover, SPM contains the characteristics of Agile, i.e. the project is broken into small 

modules of short   development cycles. This generates fixed periods to achieve development, 

prioritizes requirements, minimizes risks, is incremental, people oriented and encourages 

team collaboration. 

 
Research contribution to knowledge 

The research findings helped deepen the understanding of the different Agile 

methods. The study is distinctive in identifying and presenting a new agile method that can 

be a solid ground for further improvement. SPM has improved sequentially inside RSAF’s 

environment during many in-house and outsourcing software projects. The study’s findings, 

therefore, are contributed to the knowledge a new approach that match Agile concepts with 

better understanding and a good explanation in regards to Agile methods. 

 
Implications of the study 

This research has theoretical, practical and methodological implications from which 

academics, governments and firms can benefit. To begin with, this study has a theoretical 

implication related to its research design through using the frameworks developed in this 

study and these can be applied as an initial framework for future studies.  

The practical implications of this study can help firms and governments to apply SPM 

in their software projects. It provides an explicit and solid ground roadmap for private and 

public sectors in their software projects. 

Finally, this research provides a methodological implication. It provides a good and 

new innovated agile method that provides solid ground for theoretical discussion and 

improvements. 

Further work 
Further work may build upon this research by improving the method and its 

framework. This study suggests conducting SPM methods in different environments, 

cultures, circumstances and time scales to extend the research findings. 

 

Acknowledgment 
I am very grateful to Royal Saudi Air Force (RSAF) for giving me the opportunity to 

apply SPM methodology into their software projects. My thanks also go to my colleagues at 

the Directorate of Communication and Information Technology (DCIT) for their support and 

for the valuable suggestions and discussions. In addition, I want to express my gratitude to 

the clients for their participation by offering their valuable time, which helped me conduct 

this research. 

 

 

 

 

 

 

 



Fahad Abdulaziz Aleid 
 

124 
 

References 

Agile Alliance. (2013, 6 8). What is Agile Software Development? Retrieved 6 28, 2015, from 

http://www.agilealliance.org/the-alliance/what-is-agile/ 

DeLuca, J. (2007, April 01). (S. Roock, Editor, & It-agile) Retrieved July 20, 2015, from 

http://www.it-agile.de/fileadmin/docs/FDD-Interview_en_final.pdf 

DeLuca, J. (n.d.). version 1.3 of the Feature Driven Development processes. Retrieved July 

20, 2015, from version 1.3 of the Feature Driven Development processes: 

http://www.nebulon.com/articles/fdd/download/fddprocessesA4.pdf 

Highsmith, J. A. (2002). Agile software development ecosystems. Boston: Addison-Wesley. 

Highsmith, J., & Cockburn, A. (2001, Sep). Agile software development: the business of 

innovation. Computer, 34(9), 120-127. 

Kerr, J., & Hunter, R. (1993). Inside RAD: How to Build a Fully Functional System in 90 

Days or Less. McGraw-Hill. 
Martin, J. (1991). Rapid Application Development. Macmillan. 

Nebulon Pty. Ltd. (n.d.). FDD Process Model. Retrieved July 20, 2015, from Feature Driven 

Development: 

www.featuredrivendevelopment.com/files/FDD%20Process%20Model%20Diagram.p

df  

New Product Development Game. (1986, Jan 01). New Product Development Game. 

Harvard Business Review, 137-146. 

Scott W. Ambler + Associates. (2006, 01 01). The Agile Unified Process (AUP). Retrieved 

July 15, 2015, from Effective Practices for Software Solution Delivery: 

http://www.ambysoft.com/unifiedprocess/agileUP.html 

Scrum.org. (2015, Jan 01). What is Scrum? Retrieved July 15, 2015, from Scrum.org: 

www.scrum.org/resources/what-is-scrum 

 

 

 


